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Abstract

Background Photobiomodulation (PBM) has shown efficacy in preventing and treating cancer therapy-induced mucositis and
dermatitis. However, there is contradictory information regarding the effect of PBM on (pre)malignant cells, which has led to
questions regarding the safety of this technique. We address this issue using an orthotopic mouse model (Cal-33) with human
squamous cell carcinoma of the oral cavity.

Methods Mice with actively growing orthotopic Cal-33 head and neck carcinoma tumors were divided into 4 groups: control,
PBM only, radiation therapy (RT) only, and PBM + RT. We performed three experiments: (1) PBM at 660 nm, 18.4 J/cm?, and 5
RT % 4 Gy doses delivered daily; (2) PBM at 660 nm, 18.4 J/em?, and 1 x 15 Gy RT; and (3) PBM at 660 nm + 850 nm, 45 mW/
cm?, 3.4 J/em?, and 1 x 15 Gy RT. Mice were weighed daily and tumor volumes were evaluated by IVIS. Survival time was also
evaluated.

Results Animals treated with RT survived significantly longer and had significantly smaller tumor volume when compared with
the control and PBM-only treatment groups. No significant differences were noted between the RT alone and PBM + RT groups
in any of the experiments.

Conclusion Our results suggest that PBM at the utilized parameters does not provide protection to the tumor from the killing
effects of RT.

Keywords Photobiomodulation - Radiation therapy - Head and neck cancer - Orthotopic mouse model

Introduction elucidated, but it is complex and dependent on multiple vari-
ables [2, 3]. Given the cost and morbidity of this side effect, its
prevention has been a research priority [4]. However, with the
notable exception of cryotherapy for bolus drug infusion reg-

imens [5], and keratinocyte growth factor 1 (Palifermin) for

Mucosal damage is a common side effect of cytotoxic cancer
therapies [1]. To date, the pathobiological processes at work in
cancer therapy-induced mucositis have not been completely
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hematopoietic cell transplant patients [6, 7], there are no
established effective means for prophylaxis against cancer
therapy-induced mucositis [7].

More recently, studies have demonstrated the clinical effi-
cacy of PBM for prevention and/or amelioration of oral mu-
cositis [7—11] induced by both chemo- and radiation therapy.
However, discrepant information exists regarding the safety of
PBM, particularly with regard to the possibility that the same
mechanism that prevents integument breakdown may also
protect or enhance the growth of the tumor cells. Some
in vitro studies suggested that PBM stimulates malignant cell
growth and invasion [12, 13], while others showed sensitiza-
tion of malignant cells to killing by RT [14-16]. One clinical
study that followed PBM-treated head and neck cancer pa-
tients for 8 years described a significant survival advantage
for these patients when compared with controls [17].
Nevertheless, no conclusive data exist to determine whether
or not PBM may impart protection from cytotoxic treatments
to malignant tissues in the field of exposure. This issue is
particularly relevant for head and neck cancer. Thus, in the
current study, we evaluated tumor effects of PBM used prior
to RT in an animal model of human head and neck cancer.

Materials and methods

All in vivo studies were conducted according to the Memorial
Sloan Kettering Research Animal Resource Center-approved
protocols.

Orthotopic HNSCC model

Cal-33 cells were maintained as a monolayer culture in
Dulbecco’s Modified Eagle’s medium supplemented with
10% fetal bovine serum in a humidified incubator at 37 °C
in an atmosphere containing 5% CO,. After the cells had
reached confluence, they were transected with a plasmid
encoding for both GFP and luciferase for labeling. Cells were
then collected and injected into the ventrolateral aspect of the
tongues of SCID/nude mice. Approximately 5 x 10° Cal-33
cells were injected in each mouse and the viability of the
injected cells was verified with bioluminescence imaging fol-
lowing intraperitoneal injection of D-luciferin (50 mg/ml).
Tumors were allowed to grow until day 7. For the survival
experiment, mice were divided randomly into groups and
treated with either PBM, RT, PBM + RT, or not treated.
After treatment, mice were monitored daily for 30 days and
subsequently on a bi-weekly schedule. Mice were killed using
CO,. The Kaplan—Meier method was used to evaluate
survival.

@ Springer

Study design

We conducted three distinct experiments, in which we altered
both the PBM and the RT delivery. For all studies, we used
SCID/nude mice with human head and neck cancer cells, Cal-
33. Our laboratory developed and tested this orthotopic mod-
el, which was found to replicate the behavior of oral cancer in
humans [18].

Experiment 1 Four groups (control, PBM, RT, and PBM + RT)
of 5 mice each with growing tumors on their tongue were
included. RT consisted of 4 Gy/session (we used a X-RAD
225 Cx Micro-irradiator-Precision X-Ray), given over 5 con-
secutive days, for a total of 20 Gy per animal, delivered at a
50-cm source to skin distance. PBM consisted of exposure to
red light (660 nm wavelength), at a power of 75 mW contin-
uous wave emission, through a flat 8-mm aperture hand piece
in direct contact with the animal, over 75 s (the illuminated
1/¢? area was 0.260 cmz, the 1/¢? irradiance was 245 mW/cmz,
energy was 5.6 J, and energy density was 18.4 J/cm?)
(PBM1). We used a Thor LX2 machine (Thor
Photomedicine Ltd., Chesham, UK). PBM exposure was
completed 30 min prior to RT.

Experiment 2 As described above, four groups of 5 animals
each with growing tongue tumors were treated with a single
radiation dose of 15 Gy. Animals in the PBM and RT + PBM
received the same light exposure as above (660 nm wave-
length at a power of 75 mW continuous wave emission,
through a flat 8-mm aperture hand piece in direct contact with
the animal, over 75 s, 5.6 J/cmz), but only once, 30 min prior
to RT.

Experiment 3 Animals in groups described above were ex-
posed to one 15 Gy RT dose. The PBM2 in this experiment
consisted of an array of 5 mm LEDs made up of a combination
of wavelength (56 x 10 mW at 660 nm and 48 x 30 mW at
850 nm with a combined total power of 2 W), delivered si-
multaneously from a flat surface hand piece of 75 mm diam-
eter at a distance of approximately 1 cm from the animal skin.

All animals were housed in cages and fed ad lib normal
chow. Tumor growth was measured using IVIS imaging fol-
lowing intraperitoneal injection of D-luciferin (50 mg/ml).
After treatment, mice were monitored daily for 30 days.
Mice were killed using CO,.

The outcome measures included tumor volume (TV) fluo-
rescence stereoscopy (SteREO Lumar.V12, Carl Zeiss,
Gottingen, Germany), body weight (measured every other
day), and survival time. We used the Kaplan—Meier method
to evaluate survival and ANOVA to determine differences in
animal weight and TV. All calculations were two-tailed and
significance was established at 0.05.
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Results

In the first set of experiments, we used a fractionated schedule
of RT: 4Gy x 5 given on consecutive days, Monday—Friday,
similar to the clinic scheduling, and the PBM1 (660 nm wave-
length at 75 mW power over 75 s through a flat §-mm aperture
hand piece in direct contact with the animal, energy of 5.6 J/
cm?® and energy density of 18.4 J/cm?) was given 30 min
before each RT dose.

PBM1 alone had no significant effect on tumor growth as
measured by IVIS up to 8 weeks post-treatment. Control and
PBM1-only animals had steady tumor growth and died at an
average of 18 and 26 days, respectively (Fig. 1). All RT-
treated animals had a significant slowing of tumor growth
(p<0.001) and longer median survival time (61 days, p =
0.001). There was no statistically significant difference in tu-
mor response to RT between the PBM+ vs. PBM— groups
(p>0.05). Figure 2 shows the fluorescence at day 7 obtained
in this experiment.

We next decided (experiment 2) to test the effect of PBM1
on single high-dose radiation therapy (SDRT), since this pro-
cedure is becoming more commonly used in the clinic for
tumors that are resistant to fractionated RT (Fig. 3). We used
the same orthotopic animal model with one dose of 15 Gy
with or without pre-treatment with PBM1 (660 nm), at
75 mW power over 75 s through a flat 8-mm aperture hand
piece in direct contact with the animal (energy density 18.4 J/
cm?). PBM1 was given 30 min before the RT treatment.
Control mice and mice exposed to PBM1 experienced unac-
ceptable weight loss and therefore needed to be sacrificed,
while the mice treated with either RT or RT + PBM1 lost
initially between 15 and 25% body weight but recovered with-
in 13-17 days of treatment and lasting to the end of the

Survival proportions: Cal-33

100 1 = Ctrl
= : - LLT
% 1 .s= RT
5 1 —= LLT+RT
[ |
e 504 |
¢ |
- I
& I

|

|
0 T T |' 1
0 20 40 60 80

Days post treatment

Fig. 1 Survival of animals in experiment 1. The control and PBM-only
animals had significantly shorter survival than those exposed to RT. There
were no significant differences in survival of PBM+ vs. PBM— RT-
exposed animals. LLT, low-level light therapy; RT, radiation therapy;
Ctrl, control

observation period (p =0.032 at day 7, p=0.051 at day 13,
and p=0.041 at day 17) (Fig. 5).

There were no significant differences in tumor volume be-
tween RT and RT + PBM groups as measured by IVIS (Figs. 4
and 5). Both treatments induced a significant but transient
decrease on tumor volume, which grew back by week 5. All
animals exposed to 1 x 15Gy RT + PBM1 had significantly
longer survival than control-treated and PBM1-only treated
animals. However, there was no difference in survival be-
tween RT vs. RT + PBM1 animals (Fig. 3).

Subsequently (experiment 3), we tested the effect of PMB2
which consisted of a combination of wave lengths (56 x
10 mW at 660 nm and 48 x 30 mW at 850 nm) for a total
power of 2.0 W, delivered concomitantly from a flat surface
hand piece of 75 mm diameter at a distance of approximately
1 cm from the animal’s skin, on the RT effects on the tumor
volume. The RT regimen was the same as in experiment 2
(single 15 Gy exposure). Again, control mice and mice ex-
posed to PBM2 experienced unacceptable weight loss and
therefore needed to be sacrificed, while the mice treated with
either RT or RT + PBM2 lost initially about 20% body weight
but recovered within 20 days of treatment. Similar to experi-
ment 2, there was no significant difference between the RT-
exposed groups in any of the assessed variables. Both treat-
ments induced a significant but transient effect on tumor vol-
ume, which grew back by week 4. Unlike the previous set of
experiments, here, there was a non-significant difference in
survival (the RT group survived longer than the RT +
PBM2). No significant differences in any of the variables
between the RT alone and RT + PBM2 groups were observed.

Discussion

The relatively new field of PBM in oncology clearly requires
significant and intensive study to elucidate mechanisms of
action, basic effects, and the specific parameters at which
these effects occur. In the current pilot study, we aimed to
examine primarily the effect of PBM on human head and neck
tumors in an orthotopic animal cancer model that closely re-
sembles head and neck cancer behavior in humans [18]. We
used PBM parameters that have been in clinical use for pre-
vention of mucosal and dermal toxicity in head and neck can-
cer patients, in a quest to determine whether or not there was a
PBM-induced protective effect on tumors subsequently ex-
posed to RT. This specific mouse model did not allow for
assessment of clinical mucositis. However, the exposed tis-
sues were saved and studied for potential mechanistic devel-
opments, which will be published under different heading.

In this pilot project, we used a limited number of variants
for PBM and RT delivery. It is important to note that results of
our three distinct experiments were not significantly different.
Animals treated with 5 RT sessions of 4 Gy each had better
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Fig. 2 Tumor volume at day 7
after initiation of treatment:
Control and PBM-only animals
had significantly larger tumor
volume as measured by
fluorescence than RT-exposed
animals. One animal each from
the control and PBM-only groups
had died. a Control (n=5). b
PBM (n=5).¢RT (n=5).dRT +
PBM (n=5)

. Control (n=5)
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Fig. 3 Survival after 15 Gy RT (experiment 2). Animals exposed to RT
(n = 10) had significantly longer survival regardless of the PBM status (p
<0.001). LLT, low-level light therapy (PBM); C, control; RT, radiation
therapy
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survival, which did not reach statistical significance. Neither
PBM wavelength nor delivery method changes showed any
protection of the tumor. These results suggest strongly that
there is no protective effect conferred to human head and neck
cancer (Cal-33) cells by PBM at the utilized parameters,
which are the most commonly used parameters for prevention
of therapy-induced mucositis in cancer patients [10].

We could not detect any PBM killing or sensitizing effects
of the malignant cells, as suggested by others [14, 15, 19].
Although in experiment 2 there was a significant tumor vol-
ume difference in favor of PBM-exposed animals at day 20,
this difference vanished by day 30. We believe that this lack of
sensitization may be due to the fact that the used SCID
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Fig. 5 Weight maintenance (experiment 2). There was a statistically
significant difference in weight between animals in the control (C) and
PBM-only (LLT) groups vs. those exposed to RT (RT 15 Gy and LLT +
RT). No overall significant difference was noted between the RT-treated
groups except at day 20, when animals treated with RT + PBM had higher
weight

animals did not have a working immune system, which may
be necessary for sensitization to occur [19]. Further studies are
needed to elucidate this issue.
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Fig. 4 Tumor volume fluoroscopy after 15 Gy (experiment 2) for
radiation-only (n=15) vs. radiation plus PBM (n=15) groups. There is
no overall statistically significant difference between RT + PBM vs.
RT-alone groups except at day 20 when the tumor volume was lower
for the PBM group. LLT, low-level laser therapy (PBM)

The literature on effects of PBM on malignant cells
in vitro is broad and diverse. Hence, our results confirm
some, but contradict other findings. A study by Liang
et al. [16] used PBM at wavelength of 810 nm and energy
density of 10-60 J/cm” on oral cancer cells vs. gingival
fibroblasts. They found that malignant cell growth was
inhibited while normal cells were not affected. Another
study [15] described the effect of PBM at 685 nm at 5—
20 J/em? on cervical cancer cells and found that while
PBM itself was not cytotoxic, pre-exposure before RT
resulted in significant sensitization. These results were
supported by data from our group [14], with the exception
that we found PBM to be cytotoxic to leukemia cells
while protecting normal lymphoblasts. A similar study
was described by Ramos Silva et al. [20], who used
PBM post-RT and showed that it improved survival of
normal cells but did not affect the exposed malignant
cells. The light energy doses used in this study were quite
large (30-150 J/cm?). Liu et al. [21] showed that PBM at
808 nm, 6-8 J/cm?, inhibited growth of hepatoma cells by
more than 70%, while Schartinger et al. [22] showed dif-
ferential response to PBM of normal (increased prolifera-
tion of fibroblasts) vs. malignant (decreased proliferation
of SCC 25).

In vivo studies also provide support for our findings.
Zacchinga et al. [23] tested PBM at 660 nm (3 J/cm?) and
970 nm (180 J/cm?) on two distinct mouse models with
squamous cell carcinoma and melanoma tumors, respec-
tively. All experiments showed beneficial effects on tumor
tissues consisting on less spread and lower infiltration of
cancer in treated animals. Ottaviani et al. [19] studied the
effects of three PBM protocols (660 nm, 3 J/em?; 800 nm,
6 J/ecm?; and 970 nm, 6 J/cmz) on oral cancer or melano-
ma mouse models. The authors report decreased tumor
growth in all PBM-exposed animals compared with con-
trols. We note that the PBM parameters used are similar to
those we used in the current study. A similar study [24]
used PBM (670 nm, 5 J/em?) on UV-induced melanoma
in mice and reported results consistent with ours: there
was no measurable effect on 330 tumors examined over
37 days.

Other studies have supported the opposing view: Gomes
Henriques and colleagues [25] used PBM (660 nm, 0.5—
1 J/em?) on squamous cell carcinoma cells (SCC 25) and
reported increased proliferation in vitro. Similarly,
Sperandio et al. [13] described increased expression of p-
Akt, pS6, and Cyclin D1 after SCC9, SCC25, and dysplas-
tic cells was exposed to 660 nm or 780 nm, 2—6 J/cm?>.
Rhee and colleagues [12] performed the only in vivo study
we could identify, which showed increased proliferation of
thyroid cancer cells after exposure to PBM at 15 or 30 J/
cm?’. These authors also reported increases in p-Akt and
HIF1A.
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These divergent results are difficult to explain, particularly
when similar PBM variables and cell populations are used. We
believe that our animal model is superior to others described in
the literature, as the tumor behavior replicates head and neck
SCC in humans. We also performed our study with rigorous
methodology. We believe that, regardless of the in vitro ob-
served phenomena, the results obtained in vivo are more rel-
evant and should guide future projects and clinical applica-
tions. Further study with a broader set of variables must also
be undertaken to elucidate potential PBM tumor sensitization.

Conclusions

Our results obtained in an orthotopic animal model with
human oral cancer suggest that malignant tissues exposed
to specific PBM parameters prior to ionizing radiation are
not protected from the killing effects. If confirmed in fur-
ther studies, these findings indicate the safety of PBM used
for prevention and treatment of radiation-induced collateral
damage.
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